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NrtHROP OUAIR

FOREWORD

The objective of this program is to develop general procedures for the

I determination of electromagnetic scattering from arbitrary surfaces with appli-

cation to nptlmization of vehicle, antenna, and radome designs.

This document is principally a compilation of the following technic.., reports

f and menmos issued during the course of this investigation.

I.. Technical Data: "Scattering of a Plane Magnetic Wave from a

Conducting Circular Cylinder" - Fred Oshiro, 1 February 1963.

z. Technical Data: "Scattering of a Plane Electric Wavc from a

Conducting Circular Cylinder" - Fred Oshlro, 7 February 1963.

4 3. Technical Data: "A Source Distribution Technique for the Solution

of General Electromagnetic Scattering Problem" - February 1963.

1. NB63-125: "Propowk.• for a Source Distribution Technique for the

Solution of General Electromagnetic Scattering Problem" - April 19U3.

5. Addendum & Technical Data (Item 3) dated 23 May 1964.

6. Preliminary Data., "A SG'irce Distribution Technique for thl SoIutioim of

General Electromagnetic Scattering Problems", d'ated 14 May I)46-.

7. Addendum to Item (6) dated 14 Uecember 1964.

"hI7 *tchnique doscribed herein is being further dvvclolxpC' and ,xtuiduhd t16

. ! xl.' l itar: gorh't rh.,z undc,, contratct A.F 33(615',- 3106 .. "C lcUt't i,,l of

Hdlha(rt (Cr,lss Section' - V\.iight Patte.rson Air F'orcc Wits,, Ohio.
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mNORTMOP NOSRAM

SUMMARY

A Source Distribution Technique ("SDT") for the solution of general electromagnetic

problems has been developed by the Electronic Systems Research Group of Northrop

•,or)t ir. ';is ti.chniqui embodies a comparatively simple and unrestricted computa-

t l,,• I method aplplicable to the complex problem of scattering from arbitrarily shaped

g.ormetries. The procedure exhi)its a greater degTee of flexibility and accuracy than

prvýý.-nt day approximation techniques. It is a numerical procedure for determination

ot the radar c -.,a section for complex targets, based on an integral equation approach.

It c~n be employed to determine the electromagnetic scattering from arbitrarily shalpd

two-.ind-three-dimensional geometries in tho difficult resor..n.t frequency ranges" in

which classical solutions are not available. Combined with the Norair Physical Optic.

piocedure the "SDT" can be employed to determine the electromagnetic scattering of a

v~triety of shapes. including large scattering objects; i.e. >2 ).

Verification of the technique was performed on the Norair radar reflectivity range.

A,, image-plane was utilized to measure the current distribution and scattered fields.

A brief outline of the basic procedure is described together with a few examples to

demonstrate its validity.

- iv -



NMRTHRmP MOM

ILLUSTRATIONS

FIGURE PAGj.

I Current Distribution on Circular Cylinder,

H Inc (Vert. Pol.) (ka 1. 6)........................ UC
z

2 Current Distribution on Circular Cylinder,
IncE z Ic(Hor. Pol.) (ka = 1. 6) ........................ 3s;

3 Scattering Cross-Section of Circular Cylinder,
inc

Hz (Vert. Pol.) (ka= 1.6) ........................ 37

4 Scattering Cross-Section of Circular Cylinder,

E zInc (Hor. Pol.) (kam 1.6) ........................ 37

5 Current Amplitude Distribution on Elliptic Cylind r,

H inc(Vert. Pol.)................................ 38

6 Current Phase Distribution on Elliptic Cylinder,
H z nc (Vert. P0l.) 00000000sas i

7 Scattering Cross-Section of Elliptic Cylinder,

H Mn (Verto Pol.) .. .......... .................. 4,

9 Airfoil Section 01 ................................ 40

9 Airfoil Section ,#2 ................................ 41

10 Scattering Cross-Section of Airfoil 01

H z Ic(Vert. Pol. ) .............................. .-12

11 Scattering Cross-Section of Airfoil #2
intc

1 (Vert. Pol.) . .............................. m

12 Current Distribution on Sphere Fg(8)Lbmponcnt, (ka - 1.7).. .. .1.1

13 Current Distribution on Sphere F6 (O)Component, (ka ). .... . 4



-NO1TROP NORAM

ILLUSTRATIONS (Continued)

FIGURE PAGE

14 Bistatic Cross-Section of Sphere, (;m = 1. 7.)............... 45

15 Bistatic Cross-Section of Spheroid, (ka = 1.7) ...... ...... 46

16 Bistatic Cross-Section of Cone (ka = 1. 7) .............. 47

17 Bistatic Cross-Section of Cone-Sphere (ka 17) .. ........ 48

is Backscattering Cross-Section of Perfectly

ConductingSphere .....e.tion 49

19 distatic Cross-Section for Perfectly Conducting

Sphere (ka = 10) H-Plane ....... 1......... . . 4.)

20 Monostatic Cross-Section of Circular Cylinder

(R = 1.21X, L = 2.42X) ........................... 50

21 Monostatic Cross-Section of Circular Cylinder

(R = 1. 145k, L = 7.91)) ... . . . . .51

22 Application of l"SDT-P/O" Techniques on Bodies in

Transition Region .......................... 52

23 '"SDT - Physical Optics" Bistatic Cross-Section of Sphere

(ka = 4.1 ). .................................... 5-2

24 Hemi-Surface Mounted on Image-Plane ............ . .......

25 Image-Plane With Absorbing Material ............. 5:4

2 6 Ground Plane Reflectivity Range ....................... 54

-V1 -



--....... NORTHROP ORAI-..

LIST OF TABLES

TABLE PAGE

I Current Polarities on an Axially Symmetrical
Boey .. ... . ..* .* * - * o #.. ............... ....... 24

S2 Current Polarities on Bodies with Plane of
Symmetry . . . . . . .................................. 24

3 Symmetrical Subsurfaces for Axially Symmetric
Shapes . .. .. .. .. .. .. .. .. .. .. .. . .. 25

4 Radar Cross Section (a) of Some Simple Shapes . ... 55

- Ii-



i q...- . mm~umn

SYMBOL DE FIrirTIONS

a = arbitrary constant vector

E(r) = electric field vector

F = unknown current

N(r) = induced current vector

Ft = C + JD = trarnsverse current

Fz = A + JB = longitudinal current

P(r,) = Green's function

f(r) = manpetic field vector

Ho(0 14r) = soeo order uitsml lmetlom ofs first kind

Hl() = first order Kati bi.on of *An first kind

) - mit imaIa rammer W2.a -0 )

k = I a Wsy NmD•be

K a lidut fieadd

= unit nomal wvftr "rx + m +e

A ni A A Aftp a ntnormal atYoit P a x +M Py +ap z

n = number of surface elements

r 2 + y2 + z2 = observation point in region V

S = surfaces od relon V

t = transverse component



NOTATIONS

Subscripts:

P -)bservation point on scatterer

Q :source point on scatterer

1 -- obstacle ,iuriace

2 = outer sur~act,

t = transverse component

z = longitudinal component in z airection

Superscripts:

primed variables - represents source points

unprimed variables = re•pestnM observation points

in- - IsoMent wave

PC = sca•t•tsd wave
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1. 0 INTRODUCTION

1.1 Problem Area

Rapidly advanciug weapon system technologies have created a renewed interest

in the study of scattering and diffraction problew.s. A current concern is with

evaluation and control of radar c'rwss tection (RCS). 'Much effort has been directed

at reducing RCS by camouflaging techniques a id by uise o.f radar absorbing material

(RAM); additional efforts are directed at RCS enhancement of drones and decoy

F applications for penetration aide. There is an acute interest in reflectivity signature

for vehicle identification. Northrop Norair's studies in this field have beei motivat-'

by a need to op, *ise vehicle shapes compatible with both aerodynamic performance

[ and RCS requirements. Solutions to these scattering problems are of vital interest

to the design engineer.

SThe computation of scattering from an arbitrary obstacle is intrinsically compli-

I cated, since it dopends on several parameters as frequency, polarization, direction

of incident wave, observation aigle, configuration, and material of the body. The

I fundamental probim in !omputaMom is the explicit dstermination of the far field

parameters of ampUltms, phao, mad polarization by solution of the basic wave equation.

Traditionally, scautos to tOhe wave equation have been achieved by the separation

of variables or elgentunction expansion, asymptotic evaluation of an integral equation,

and the optical approximation techniques. The restrictions imposed by these methods

have limited their usefulness in many practical engineering problems. The require-

ment that the body configuration be completely defined in a coordinate system has led

to special mathematical functions that are tabulated for only a few simple shapes.

Asymptotic expansions lead to infinite series, whose convergence behaviors are detcr-

mined by the "electromagpetic size" of the body, therefore, for practical reasons, onlyI-
L
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"small" shapes have been examined. In contrast, the "optical" techniques are valid

only for "large" shapes.

An immediate dilemma arises when the design engineer is faced with a scatter-

ing problem in which the geometrical shape does not "fit" the above requirements. The

problem usually is approached by intelligent application of known nolutions from

simpler shapes, or by relying heavily on reflectivity range data. A need then exists

fcr a general method for evaluating the scattering and diffraction problems encountered

in the design of practical electromagnetic systems.

1.2 state of the Art

Since the solution of electromagnetic scattering 1nd diffraction problems is

difficult, the introduction of the above restrictions was not without foundatimn In

order to gain insight as well as attach plhysical sliificance to the theoretical studies,

it was natural that the classical stiuies be onceuirated on small, simple, and idealized

bodies. Most of the present day approximation procedures for complex structures are

usually tested against the exact solutiosm from simpler shapes. The simple body

solutions provide the only means for calibratin eaperimental techniques to measure

scattering and diffraction phenomena. Also the knowledge gained by a detailed study

of the simpler shape@ is used as stepping stones to t-ie study of more complicated

shapes.

The accomplishments of Siegel and his group at the University of Michigan

together with the Antenna Laboratory Group at Ohio State University, constitute a

major contribution in recent years (References 1 and 2). Their procedure was to

assume that the various parts of a large complex shape (such as an aircraft) scatter

-2-
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I independently. They approximated the parts by relatively simple shapes, computed

the scattering from each shape, and combined the Indivkiual contributions to obtain

the total scattered iield. Their results yield good agreement between theory and

3 experiment. However, for critical aspect angles large errors arise which are

generally attributed to the inability of the method to properly model the resonance

I of the fine structure (i.e., ducts and engine nacelle).

5 In attempting solutions to more general configurations, the emphasis is usually

placed on the desirability of attaining purely analytical solutions. The study of

numerical solutions has been neglected but not overlooked. In 1959 Sinclair (Refer-

ence 3) emphasizes the need for more general methods of solving boundary-value

problems. He also pointed out that there may be certain advantages of numerical

3 solutions in the "resonance region." The usefulness of numerical techntlq'es in the

solution of potential flow problems (Laplece'l equation) in aerodynamics and hydrody-

I namics has been demonstrated by Smith (Reference 4) and Hess (Reference 5). In

3 addition to solving gensral problems Involving two-dimensional and axially symmetric

bodies, they have provfded gensral techniques for the solution of arbitrary thren-

dimensional shapes. There Is a very limited supply of numerical procedures for

general electromagnetic scattering problems.

It is the p,.rpose of this reportto describe a method based on the numerical

ft solution of an Integral equation which is capable of giving excellent results in this

raI•ge. Additionally, by application of the principles of physical optics, the techniqu(

I is extended to include "large" objects and has the nique feature of eliminating much

g of the guesswork associated with the current customary physical optics procedures.

3
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2.0 THE SOURCE DISTRIUTION TECHNIQUE 1'"SDT")

2. 1 Two-Dimunsional Formulation

2. 1. 1 Derivation o1 dhe intemral Eauation

y

t o

Vx

I

In the volume V enclosed by surhoes, 8 mid B. assume there exists two

scalar potential functions # (r) and G (r', r) msch that *(r) satisfies the homo- I
geneous wave equation,

(72 2+k 2) *(r)nO -

* (r)-.a.-0 as r -.a

and the Green's function G (r', r) satisfies the wave equation.

(V2 + k2 ) G (r', r)- - (r - r'),

(2)
G (r', r)--a- 0 as r-.. a.

-4-1
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Applying Green's Theorem to #(r) and G (r', r) we obtain

f IG (r', r)(VP2 + k2 )0 (r')-,(r,)(V,2+ k2) G (r', rudv'
v

(3)
= f !�rr(r',-r), (r')- .-r') G (r',r)•da'

where the normal derivative on the surface is taken in the direction of the inward

Pormal.

However, in virtue of Equation 1.

f I G (r', r)(IPA + k2 ) # (r')J v'-1 , (4)

also from the definition of the delta kietion

"f I Wi( (IPA÷+ 0)o(r', r)I &I'-
V

" f , t 0,' r" €, ,•*- , ) •t
V

Equation 3 becomes,

,(r)- I G(r', r)-,*(r')- ,(r')j--r G(r', r) ,dut

+1 Io(r,, ,r)r (r )-, (r.)--r G(r, r)] d.o
81an

-5-
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The total field at r, In composed of an incideLt and scattered field,

Ototal (r) =- inc (r) + # sc (r). (7)

It can be shown, (References 6 and 7) that the integral over S2 reduces to

Sin(r) and the integral over SI represents the scattered field.

Equation 6 becomes

1total ON inc (r) + I G (r', r) r -*r') G"(r', rI ds
1  ( ) F i r (8 )

and represents the integral equation of the field at r in terms of an inoident field

contribution and a surfce integral contrlnttln.
2.1.. 1. 1 f leMW (EZi

For the case of TMmode propaptIm In the two dimensional domain the electric

field can be expressed as
A3(r). *(D,*0) -m- 3 (t)a- •

Z n0ltO ANZ~ (9)
where z Is taken as the separation direction and t represents the transverse

components. (This propagation mode oorrespods to horizontal polarization). Sub-

stituting this expression In Equation 8 yIelds,

E totl S(t)E WWt) + f I G(t, t)o-0 E total (t'). z On Z
(10)

- E total (t 1)~ (to t)JI dot

-6-



The free space Green's function in the two dimensional domain is the zero

order Hankel function of the first kind,

G(Pt, of; P, O)•LHo(1) +k +p,-2. PPIcoo 0 ') (1

or O t', t) . H0o(1) (kit -t'I) * (12'

If S1 is perfectly conducting, the total electric field vanishes on the surface,

[
total (t)= EInc (t) S E c (t) 0Ez

Therefore when the observation poit is taken on the surface, Equation 10

reduces to

K 0( + • 8 (0) It -tel). -T total (t,) d•t (14)

J~~. Th pazlt - Is the unkonm current induced on S, by the
incident electric field. TMW diectie. of current flow is in the direction of the electric

I field, e.S., the b dlreotlon. BsWt,

Fs (t')"3an. zE O (t') . (15)

and introducing subscripts P and Q for the observation and source potnts respectively

on the surface of the scatterer, we obtain the desired integral equation for the

1. unknown current Fz(tQ) s

O=EzinC(t)+ý- f IH 0 o()(kItp-tQl) Fz (tQ)I I . ( )

1 7-
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2. 1. 1.2 LEJ_2 (Hz inc ) Promatlon

For the case of 7 E mode propagation, the magnetic field vector may be

expresscd as follows:

A 

(7H((r)= (P, 0)zHz (t) z (17)

where, again, z is taken as the separation direction. (This mode of pro-

pagation also corresponds to vertical polarization).

Substituting this expression in Equation 8 yie!ds,

Hztotal (t)= HInc Wt+ / I G (to, t) n Hztotal It')

(18)

-H total ( ) 0G(V, 0 do'

The boundary co:dflton on SI for the TE case Is

.0total (19)jjar (t')0= o

If the observation pobt is taken Om SI, then Maue (Reference 8) has showa that

the Induced current at the point of incidence Is the average value of the magnetic field

at that point, consequently

Hz(t)= zn
H ZW = I L H tot (t,)_Fn H-() f (It - el dn' (20)

The quantity Hz total 49)is the equivalent unknown current induced on S1 by the

incident magnetic field and flows transverse to the z direction.
"A• Htotal A

Ft (t') = HZ (t') t (21)

"-8-
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The integral equation Is,

Hzttal (tp) H inc (Y

41E f i( 10 ) (kitp-tQ)" Ft (tQ) cos , n(tp tQ ))JdsQ (22;
S1

"I .2.1.2 Scattering Cross4-Sectton

The scattered fields may be evaluated from the current distribution by applica-

[ Lion of KirchoU's integral

c (r) = - /v' G (r', r)xF (r') do' (23)r sS
Since the observation distance is usually taken to be very large, the asymptotic

forms of the Hanlkl functions nay be introduced for the Green's function to give:,

"['HzS " (2-)1/ j 1r - ,,/4) f .. Jkr' coo (9 - ') cof ) , 'v') ds' (24)I S

gac (r) j'. )1/2 0 Jkr - w/4 ) JF ikr'coo(G 0%9dh (25)

The radar cross section of two-dimensional cylinders is defined as the power

scattered per unit axial length to the incident power and has dimensions of length.

Thus,

a e=2ffr I 1 2 2 rI Be)2 ,. (r)j1 2 (26)

L where the expressions ElSc(r) and H zc(r) are the scattered fields from Equations

L 24 and 25 respectively and the integration is taken over the closed contour of the

! -9-
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scatterer. For simplicity the scattering cross-section has been normalized to

unity incident power.

2.1.3 Numerical Solution of the Intearal Euuation

The use of an integral equation to formulate a scattering problem is well known

and has been the basis of many approximation techniques. (References 8-14). The

present technique differs from classical treatments in that numerical mtth.ds are

exploitel to obtain direct solution for the unknown quantities rather thar. io1'mal indirect

methods. The solution of Equations 16 and 2 2, for example, may be achieved by

first approximating the contour S1 by n straight line segments and then setting the

current distribution constant over each interval.

F 1i =A i +jB 1  (27)

Fti U Ct + j Di (28)

This assumption is valid only Uf the line segment is less than . 12X.. Inserting

this expression in Equations 16 and 22 respectively yields

icA ti(tQ) + J Bi (t )( (

-H zinC (t p) = + J

(36)

+ Ci (t ) + j Di (tQ)i j fH (1)OI tP - tQ l Cn (n", (tp*-t t)) dls,
4 Q i I P



The integration of the Hankel function is carried out numerib.ally via Simpsun's

rule. The integral equation is now recast into a set of fi"'&- difference equatiors,

wherein the complex coefficients of the unknu-wn currents form an n x n matrix, n

being the number of Eub-surfaces describing the body. The excitation function is the

impinging wave. The unknown currents are determined by solving a matrix equation

of the type

[T] [F] = [K1 (31)

where

[FI - unknown curr4dnts

[TI = Kernel of the integral equation

[KI - incident field

Applications of matrix inversion techniques lead to a direct solution of the

currents.

2.1.4 It Ed""atia to Two-DlwRu.ionl Geometries

To demonstrate the validity of this technique a classical problem is examined,

i.e., catterUn from an inflnite circular cylinder. The problem is specialized for

normal incidence of either a vertically or horizontally polarized wave, re ulting

in either transverse or long tudinal type currents respectively. These simplifications

were introduced to provide suitab.3 comparisons with available classical results.

Figures 1 and 2 are comparisons of the current amplitude and phase with the classical

series expansion results. (Reference 15). In both examples the diameter of the

cylinder was chosen to be X /2 ; and twelve points were distributed equidistant around

the periphery V" carry "-'t the numerical integration.

- 11 -
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The bistatic scattering cross-sections of the circular cylinder for vertical

and horizontal polarization arc, shown in Figures 3 and 4 respectively. The trans-

mitter is fixed at the 180 degree position and the radar cross section is observed at

vorious histatic angl,Js The quantity characteristics of energy scattere( back toward

the source is c(,mmonly known as the monostatic cross section of the obstacle where-
I

in the transmitter and receiver are both located at the same point. The forward or

total scattering cross-section is the value at 0 degrees. Where possible theoretical

results have been introduced for suitable comparison with the "SDT" data. Normali-

zation of the results is accomplished by multiplying the cross-s -ction by the wave

number, k. (The designation 'SDT" in quotation is used to distinguish this technique

from other prCVo L "es developed during the course of this study).

The flexibility of the "?SDT" for the solution of non-circular geometries will be

demonstrated. Earlier contributio.,s to generalize the circular cylindrical scattering

problen"s to ncn-circular shapes were made by Fock (Reference 16). His "universal

function" enabled him to determine the surface currents in the penumbra regiorn near

to and Including the shadow boundary. More recently, Wetze! (Reference 17) follow-

ing the lead of Fock derived a new set of finctions to obtain the currents in the deep

shadow region where Fock's approximation was not adequate. Wetzel applied his

functions for the solution of the current distribution on a perfectly conducting elliptic

cylinder and confirmed his theory with measured data. The "SDT" was applied to

the same geometry for comparison. As shown In Figures 5 and 6 the "SDT" shows

still greater correlation with the measured data, especially In the deep shadow region.

Its bistatic acattering cross-sostion is shown in Figure 7. The sharp peak in the

forward direction is characteristic of large scatterers.

Next. the scattering cross-section of two different airfoil sections shown in

Figures 8 and 9 wer:! considered. An incident magnetic plane wave propagating along

-12-



the x-axis impinges on the surface of the perfectly conducting two dimensional

geometries. Classical results to these geometries have not been possible because

of the complexity of solutions. The airfoil shape was approximated by 49 straight

line segments distributed along the periphery and the "SDT" was applied. The bi-

etatic cross-sections are shown in Figures 10 and 11.

Several impo-tant conclusions concerning the behavior r these scatterers

can be made which otherwise would be difficult if not impossible to predict by

approximation techniques or by intuition.

1. A large back lobe is developed at 150 degrees in the direction of the

trailing edge.

2. Although airfoil section No. 2 is smaller than No. 1, Its major back lobe

is larger.

3. The monostatic cross sections (at 1800) of the airfoil sections are

approximately equal.

2.2 Tr Dlmensnial Formulation

2.2.1 intiation of tM JIk" Emmtion

Aside for the addional complexity of vector fields, the derivation of the inte-

gral equation is similar to the two dimensional case.

In the volume V enclosed by surfaces S1 and S2 assume there exists two vector
A A

fields H(r) and G (r', r) such that H (r) satisfies the homogeneous vector wave

equatior.

V V A 2A
xvxH(r) -k H(r) 0

(32)
A

H (r)--Oaz r-

- 13-
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A
H ()=Magnetic Field

G (r; r) (P (r; r a

0(r; r) = e k Ir-r'I

A

Hxx(r',) - Q2 ('r (

Gr' (r) , Q)eOasr

AA

whor the necormaleen's direction ~Inard stowards the vnolmoeouwae eqa.o

(rI, r) - 14 G -r )(



!

The left hand side of Equation 34 reduces to

A H(r'). (r- r a d v' Hr) a (35)

V
The vector is assumed constant and arbiJrarily oriented within volume V.

Equation 34 becomes,

I A A IA A A A AA 1-f[A
- (r). a : J iVx ~ ' ~ 'r + x ~ ' . v x ~ 'r •

I - x P'xHi(r') ].G(r',r!i+nxHir') . V'xG(r',r)] ds' (36)

A ine
Substituting H (r) = H in(r) - (r) into the first integral of Equation 36 we

find

82 8 2 ('jGr

+.[A X r . x A (r, r) Ida' (37)

" • x~vt xfr"(rI)0 J 0 (r',r) [ x c(r9)] 0 [+'HG (r ",r)] tds0

"Applying Green's theorem In reverse to the first integral

-f Ix n v Ht (r') ]. G (rt,r) +[Inx HlnC(r )[~ G rr]dS

G r(38)

H x rln (r)(• x +•x k2) Jn.A (rI, r) d v'

S- 15-



nC ) ma dnc(r), a (38)

f (r')[. 6(r - r') dv t  H Continued
V

The second integral vanishes identically since H (r') and G (r', r) both satisfy

the radiation condition. Therefore, Equation 36 reduces to

1\ inc A

H (r)a r). a (39)

[x v' x H(r')•Jr+(r'r) hH(r) • [V'x (r'G , r d s'
S!

And from Maxwell's equation,

A A

VxiH(r') = widE (r't (40)

we find

A A A Ar ~ a A~
H(r) .a = jjnc (r) a fJ f E n x Z 0'f OW, r)

81 [

(41)

+ [n, H0)]. [V, x (,., rd] I d,,:

If obstacle S1 is assumed perfectly conducting tien tile tangential component
A A

of the electric field vanishes, n x E (r') - 0 and additionally the current induced on

AA A
S1 is given by n x H (r') = F (r').

Equation 41 may be rewritten as
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H r)aH ( lF(,,)-[VxG(.,r) (42)

But,

^~Gr rp)= VPQxrPrQ rp) a='o(V x•)A AeQx G (r. p)vxq (r., rp xa

+ VQ P (r., rp)X a Q(qO(r., rp) x•a since ^ to a constant vector.

Hence,

H (rp) .t = H•nc (rp) a- f VQ Q (rQ, rp)x F(rQ) d sQ 43)

If the observation point is tmokm on the ourface we obtain the desired Integral

equation

F^(p) P--. A.,(,A[,o
- ' r(r(r x n P - 9(rQ, rp) xF (Q) xn d s Q(44)

Where subscripts P and Q dsltuato points on the surface of the scatterer

and
0+rjk Irr -=r QlI

IrP- rQI

S(r P) ourront at point P

VQ (rQ rp) a gradient of 4p with respecttopointQ

= •'IP 'l [1+ik~rp'rQI] 0(rq' rP) •t; t= x,'y, z(rp- M A

- 17-
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Ain
Hn(rp) = incident plane mave at point P

Anp = unit normal at point P

I rp r = \/(xp- xQ)2 + (Yp- YQ)2 + (Zp ZQ) 2

8 1 =total surface of the scatterer

dso element surface at point Q

2.2.2 Scattertnf Cross.Section

The scattered field may be obtained by substituting the current di-tribution in

Kirchoff's integral,

Hsc(r)= Gr', r) F (rl) d s

(45)
A.- + Jk r. -" ! r' -,. rl A.,

L 4 ' -r

and for r > > rt

A !-, Ar[,.',
Hs (r) ft j k j([e3k. Ir- r'I .xF(r')]d a' (48)

The scattering cress-section has the dimension of length2 . Thus

a s : = 41rr2 i)1 (47)

- - (r)



A
where HSC(r) is given by Equation 46 and the integration is carried out over the entire

surface of the scatterer.

2.2.3 Numerical Solution of the Integral Eauation

The integral Equation 44 represents the complete formulation of the boundary-

value problem with the following boundary conditions:

A A A A A

E (r) x =O, H(r)X xn =- F(r)

To completely evaluate the unknown currents, the integral equation must be solved

for the individual components of 0 (r). For the spherical geometry, the surface may

[I be parameterized in terms of local coordinates T and Z. In this special case there are

two components of the unknown current and the governing set of equations are:

2jkaco d f ej kr (I+ kr)

I 0f-if r

si i o o OCBP-C (48)

+ [gin - )(coo - coo 1 F

F0 2 cos• coso 4 e ka coo ((49)

L d-0 f d 3 ( j E F +[ FT.
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The coupled set of matrix equations are

"I Hj ncI=AIIF-.+ JBJJF IJ (50)

00

By direct extension of the two-dimensional case, the surface was approximated

by n elemental areas each having constant surface current density to develop a set of
A

finite difference equations. However, since F (r) is composed of two orthogonal

components on each surface, the matrix equation will be of order 2n. The technique

was applied to the problem of electromagnetic scattering from a sphere due to an

incident magnetic field. The diameter of the sphere was chosen to be. 541 A (ka = 1. 7)

and 72 elemental areas described the complete mrbee. Because of basic symmetries

in the problem the size of the matrix was reftced from 144 x 144 to 36 x 36. A more

complete description of symmnetry conlltions will be given in subsequent paraSaphs.

Figures 12 and 13 are comparisons of dio P- (0) and F#W data (taken about the

principal plane) with the cassioal sobltions of KL4ig and Wu (Iteference 15).

The scattered fields are obtained from the following equations:

4 ir 0 Jr r [C
H = " 1 f- dlllt••r(*-• Iosi' sin (•- ')F

(52)

+ coo( -

H -LfdQ r ini a sin i + coosicoosOHqo= JSd \r / . II,,n,~

i stn(p - 0) coB Fj (53)
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The scattering cross-sections are obtained from:

4rr2 ffH0I2  f2 fJH_,_2ds

s 41rr ds or a =47rr 2 (54)

Comparison of the bistatic cross-section between the 'SDT" and classical

results are shown in Figure 14.

For more complex geometries it is convenient to expand Equation 8 in the

"I Cartesian coordinate system. Carrying out the indicated operation and resolving the

- integral equation into sepa,-.te components we obtain,

2(Hoynp- Hoz map)

--F (P) + IT. F. (Q) + T, F~ (Q) +T. F.Z(Q)JdsQII

2(Hoz' "p - np)= Fy(P) + . TyF (Q) (5

+ T F(Q) + Ty F (Q)doQ

2 (Hox - Hoy I p) =-z (P) + fJTZxF1 (Q)+ Ty F (Q>+ TzzF(Q)Ids

where•
i A A A A

"Ho (P)=Hox X+HoyY+HozZ

T. = R(P9Q)I(z.-zQ)np+(y-)mp



T xy=-R(PQ)j(Xp-XQ) 
Mp

Txz = - R (P,Q) (x p - x Q n p

iy. = - R (P, Q) (yp - yQ) 1p

T yy= R (P, Q) I(x p- XQ) Ip + (Zp - zQ) npI

Tyz= = -R(PPQ) %yp - yq n p

T zx = - R (P,Q) (Zp - zq) I p

TZy=-R(P,Q) (zp-ZQ) Mp

T U= R (PpQ)I (xp - XQ) Ip+ (yp- YQ) rnp

and

R (P,Q) a (I ,Jk Ip -r.QI) , +.j k Irp - r I

If the total surface is approximted by n subsurfaces and we let A S. denote the

subsurface at point Q, the integral of Equntion 55 can be replaced by a summation

preparatory to numerical integration.

2(H0~~~~ ~ ~ n~H~ m = F X ~ f . ,2 (H oy n p - H Oz m P) =-Fx (P) + yl- J:Txx Fx (Q)

QW1

(56)

+ Txy Fy (Q) + Txz Fz (Q)I A SQ



2 (H H F (P) + T F1(Q)

+ Tyy Fy (Q) + Tyz Fz (Q)J ASQ (56)
continued

n
2(H Ox mp- H oy I p) F z(P) + y'r 1:l1TzX= Fx !

Q=1

+ Tzy Fy (Q) + Tzz Fz (Q)j AS Q

It should be noted that the summation applies to all n surfaces except for P = Q

which is the singularity term represented by the single term outside the summation on

the right hand side. The left hand side represents the incident wave, H (P).

Each equation in 56 represents n equations, (P - 1 to n) and the 3n

simultanewus linear equations yield solutions of Fx, Fy and Fz on each subsurface.

Equation 56 in matrix form is,

ITI IF]I=IKI (57)
where

IKji incident field a 2Hnc (p)x nP

F1j= unimown eurrents
T K.~nel of Ike integral equation

(*oemeflnts of Fx, F mid IOW F tEquation 56)

F lis readily o.;tai& by maltlyft 14AqtIon 61 5?roagh by the inverse of the

f oeffictent nmtrix, [T]



I F = H 'J IjKJ (58)

Because of the limited storage capacity of computers maximum accuracy is

a ined by utilizing the symmetry properties of the scatterer. For the case of

iaIiyv symmetric bodies the number of subsurfaces can almost be quadrupled

-tIh the same computer storage. When such properties exist it is possible to combine

the coefficients of the symmetrical terms and thereby reduce the number of un-

c'w.ms. Care should be 'aken to determine the proper direction of the currents hence

. signs of the coefficients before combining. For the case of incident plane wave

J-veiing along the z-axls and H polarized in the y direction, the polarities of current

maponents on an axially symmetric body are given in Table 1 with the first quadrant

reference and the other quadrants given in the conventional x-y plane of the right

mmded Cartesian coordinates

Table 1 Current Polknrtik. on an Axiatly Symmetrical Body

Qad~rat Fx F y I

IV +

For the case of plane symmetry the number of subsurfaces could be doubled

applying the above procedures. With quadrants I and IV as reference, and y-z

plane of symmetry, the polarities of the current components are given in Table 2.

Table 2 Current Polarities on Bodies with Plane of Symmetry

Quadrant F 1f Fx y z

I&IV + + +
ll&m + - "
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As an t>imple a spheroid of 12 x 12 subsurfaces will be considered

06 69 = 90 0 ASx 
r P1

* 4/0

% 390. 41o

9 -90
"-Y--7 4 Y goo90

Sketr.t 1 Spheriod with 12 x 12 Subsurfaces

In Sketch I the total surface is divided into twelve sections in both 6 and

directions and a set of indices (J, K) is assigned to each subaurface. The first number

denotes the order in the 0 direction and the second number, the # direction. Table 3

lists the symmetrical subsurfaces whose coefficients are combined to reduce the

computer storage.

Table 3 Symmetrical Subsurfaces for Axially Symmetric Shapes

Qusdirt Symmetrical Subsurfaces (K = 1 to 12)

I (1,11 (2, K) (3, K)
n (6, K) (5, K) (4, K)
M (7, K) (s, K) (9, K)
IV (12, K) (11, K) (10, K)

Once the current on the surface of a scatterer is determined, the far-field

pattern can be obtained by applying Kirchoff's integral. Let E, Ey and Ez denote

the three orthogonal components of the electric field at point R kq, 0), we have

- 25 -



An e (kxQ,.kyyezzQ)

X Q1 ' 'O
n eJ(kxx.+k Q4,kz.,,

EV C (Q)e YY kQ) (59)

Q= y Q
Aen(kxx~eyq zQ, S

j Qx.+k.yy.+kzZJ

Ez=C I i (Q) e Q
Q=1 z

where (xQ,, YQ, zQ) 2 coordinates of the current points

kx =ksin cos

k = k sin 0 sin 0Y

k = k coso

C = normaliation constant.

Transformin into spherical coordlmtes, we obtain

A A A A
E Ex cox #Gcoso#+ Ey cos sin#- Ez sine

A A A (60)
E , " Ex si y + V y cog o

E, and E* as well as Ex, Ey and t. are complex quantities and are expressed in

terms of real and Imaginary components. When the magnitude and the phase are

desired it is only a matter of simple conversion, e.g.

EE

tan- r-
R
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¶ where

A
E=E.JEI

The scattering cross section at r is then given by

A 2 + IA9I2

9C -2 1IIEI E (62,
a 41rr I E'nC 1

2.2.4 ApRllcation, to Arbitrary Three-Dimensional Geometries

To demonstrate the versatility of ti~e "SDT" to geometries which are not

tractable by classical procedures, several basic shapes were examined. A prolate

spheroid with minor axis Ia = 1. 7 and major axis kb =3.4, was selected for coin-

parison with the aforementioned sphere. In Figure 15, propagation of the incident

magnetic field is along the major axis and the bistatic cross section is observed

throughout the 360 degree seotor. Considerable reduction in the monostatic cross

section (in the 180 degree direction) was achieved. (Refer to Figure 14).

The truncated come and cone-sphere geometries are of current Interest since

they conform to basic re-entry vehicle configurations. The bistatic cross-section

of atruncated cone due to aplane wave incident on the tip isashown in Figure 18.

The large back lobe is due to the sharp discontinuity at the b~ase of the cone. By

capping the base with a hemisphere to elminate the discontinuity, it Is possible to

suppress (by approximately 10db) the backlobe contribution as shown in Figure 17.

3. 0 NORTHROP NORAM'S "PHYSICAL OPTICS" PROCEDURE

3. 1 General Formulation

As indicated above, solution of the general electromagnetic scattering and

diffraction problem via Northrop Noralr's Source Distribution Technique ("SDT")
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is based upon the explicit determination of the current distribution induced on the

surface of the scatterer by the incident wave. The scattered fields anywhere in space

are In turn evaluated by integrating the current distribution over the entire 3urface.

The unique feature of the "SDT" is its extreme simplicity and flexibility to solve

arbitrary geometries. Since the scatterer is described in the Cartesian coordinate

system, it can be approximated by a finite number of elemental surfaces completely

independent of rotational or plane of symmetry. Another advantage to choosing this

coordinate system is in the simplicity in evaluation of the scattered fields from the

current distribution. Inasmuch as the three surface current components on each

elemental surface are expressed in the Cartesian coordinates, simple trigonometric

functions relate the currents to the scattered fields.

When the characteristic dimension of the scatterer lies inthe resonance region

(.AX to 2X) the induced current distrlbution is obtained by numerical solution of an

integral equation. The integral equatio is npi ted by a finite difference tech-

nique which recasts the integral into a set A linear simalaneous equations anA is

solved by matrix nvarsion techniqes.

When the characteristic diural.. of the scatterer is greater than 2 ). a

fundamental limitation of the matrix Inversion technique for solving the Induced

current distribution lies in the storage capacity and speed of the digital computer and

therefore questions regarding the effectiveness of the techniques to handle these

-rger complex geometriles naturally arise.

Indiscriminate use of storage tapes to accommodate larger and larger matrices

would be seriously questioned since the rapidly increasing computer costs would

deter the analytical procedures in favor of empirical techniques. Furthermore,
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since greater accuracies are also associated with larger matrices and hence higher

computer costs, cost-effectiveness must also be considered and properly weighed

with accuracy requirements compatible with the overall system.

To this end Northrop Norair has utiltz,'i the well-established procedures of

physical optics to determine the current distribution on "large" perfectly conducting

scatterers. The surface of the scatterer is approximated by n elemental areas

(expressed in Carte ian coordinates) and the surface current components are

evaluated from the tangential component of the incident magnetic field at each sub-

surface.
AA A
J = 2n xH

I
where J. = current density, n = subsurface normal,

Ht = tamnntal componen of Incident magnetic field.

The scattered field is given by

2wwhere k = - zwave mumber, r distanoe from any subsurface to the noint

of observation and the summation is carried out over the entire illuminatee area.

As can be seen by the formulation above, a rigorous computation of RCCS of

even the simplest shape is a formidable task, restricted to analytical surfaces. The

L results for some of the tractable geometries are tabulated in Table 4 along with

limits of applicability and proper formulation for regions of the dependent variables

L (wavelength, viewing angle, etc.). Generally the analyst must decompose the vehicle

L by experience and good judgement to allow application of catalogued shapes and sum

L -29-
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to approximate RCS. To overcome these restrictions, Northrop Norair utilized

numerical procedures developed in part by the previous 'SDT" program. The

surface of the scatterer is approximated by n elemental areas (expressed in Cartesian

coordinates) and the surface current components are e:nplicitly evaluated and properly

stored in the computer. The scattered fields and RCS are then determined from

Kirchoff's integral. This computer program is designated "Physical-Optics" and is

applicable to surfaces whose characteristic dimensions are large (* 2X).

I
3.2 Numerical Results

To test the range of applicability of this procedure, the classical problem of

scattering from a perfectly conducting sphere due to an incident magnetic field was

examined. Comparison of the backscattering cross-section with classical results as

a function of sphere circumference is shown In Figure 18. The afrc-ment is quite

good for values of ka greater than 11. In all cases the Illuminated portion of the

sphere was approximated by 2,520 "surface elements. As a rnatter of interest,

Figure 19 compares the bistatlo oross.seotlm for a sphere (ka = 10) with the classical

series expansion results.

The flexibility of this "Physical Optics" technique for the solution of more

complex geometries is demonstrated by exmining the monoetatic scattering from a

large finite cylinder. The customary procedure to handlo this geometry would be to

approximate it ty simpler geometries for which solutions are known (i. e., the ends

by discs, cylindrical body by finite cylinder) and th6an sum the results in an appro-

priate manner to obtain the total cross-section of the original shape. These results

are included in Figures 20 and 21 together with measured data obtained from Northrop

Norair's radar reflectivity range. The discrepancies in vicinity of 45 degrees are

due to edge effects which are ignored in the "Physical Optics" analysis. Edges and
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surfaces discontinuities can be handled by including the "SDT" procedure with "Physical

Optics" as outlined next.

4.0 "SDT-PHYSICAL OPTICS" PROCEDURES

The "Physical Optics" approximation technique fails to describe properly the

currents on bodies in the transition region (upper end of resonant region and lower

end of physical optics region). Northrop Norair's SDT and "Physical Optics"

techniques are suitably combined to determine explicitly the current distributions

over the entire surface and thun sum them to obtain the scatter fields. The combina-

tion of the two programs is identified as "SDT-Physical Optics" ("SDT-P/O').

In Figure 22, let ACB be the illuminated region and ADB, the shadoh region.

The combination procedure simply applied the "Physical Optics" techniques to a

portion o the illuminated area and then determines the current distribution in the

shadow region by applying the "SDT" program, considering the coupling effects from

the entire surface.

The improvement of the 'IDT-Physical Optics" program over the "Physical

Optics" technique for bodies in the transition region is clearly demonstrated in

Figure 23. It is clear that a more accurate description of the currents in the shadow

region has been achieved in the combination process resulting in more accurate

description of the scattered fields.

5. 0 EXPERIMENTAL APPARATUS

An image-plane technique was utilized to measure the current distribution and

scattered fields. The general instrumentation followed along the lines of Kodis

and Wetzel (Reference 18) who successfully applied it to two-dimensional surfaces.
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A few modifications to their procedure was necessary to accommodate the three- I
dimensional geometries described in this study. 1

An image-plane was constructed of 1/16 inch aluminum sheeting and electrically

bonded to form a continuous 16-foot x 24-foot ground plane. Flatness was held to 3
1/8 inch over the entire surface. Located in the center of the ground plane was a

circular opening 15 inches in diameter. The well beneath the cut-out housed the

measuring and positioning apparatus. An aluminum plate, together with the position- 3
ing device, was fitted into the hole flush with the surface and secured from below.

Iemi-surfaces of various shapes investigated were fabricated and fastened to the

aluminum plate (See Figure 24).

For the current distribution measurements, a maguetic probe mounted on a

copper band was carried over the surface for vartous elevation angles. This, 3
together with the option of rotating the circular plate in azimuth afforded the system

with two degrees of freedum. AmpliUbde and phase meausrements for both elevation I
and azimuth positioms were thus obtained.

Plane wave excitation was approximated by an H-plane flared horn fastened

at one end of the image-plane. Since the mode of propagation over the image-plaae I
was TM, all measurements were conducted for only vertical polarization. L

Calibration of the system was performed on conducting spheres for which

formal solutions are well-known and eensively tabulated. Results of these measure- L
inents are shown in Figures 13 and 14. The primary source of error was from re-

flecting edges of the ground plane. To minimize the edge effects, absorbing material I
was laid and secured along the entire periphery. (See Figure 25). Bistatic reflectivity I
measurements were also conducted on the image-plane utilizing an Interferometer

technique. In operation the bridge is initially nulled without the test specimen, then [
vith it In place; the recorded difference is the measure of the scattering cross-section.
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The image plane is also equipped with a rotator and transmitter mount to

function as a ground plane reflectivity range as illustrated in Figure 26. A more

complete description of the measurement apparatus and test procedures will be

published in a forthcomirng report,

6. 0 CONCLUSIONS

The results of this study indicate that a useful and versatile technique has been

developed for the solution of electromagnetic scattering from arbitrary shapes. It if,

capable of solving two- and three-dimensional scattering problems for which classical

solutions are not availab!L. For those simple geometries for which exact solutions

are available for comparison, excellent agreement was found in all cases. For the

other shapes the 'SDT' solutions correlate well with the measured data.

Since the scatterer is des'.ribed In the Cartesian coordinate system, it can bt

approximated by a finite mnmber of elemental surfaces completely independent of

rAtatonal or plane of symmetry. Another advantage of choosing this coordinate

system is the sImplict•y in the evu nation of the scattered fields from the current

distribution. As the three surface current components on each elemental surface

are expressed in the Cartesian coordinates, simple trigonometric functions relte

the currents to the scattered fields in their appropriate designations.

Although developed primary for the "resonant" frequency range, the '"SDT,'

program has been suitably combined with large body approximation procecures,

"SDT-Physical Optics," handle larger geometries with greater ease and flexibility

then present-day approximation procedures.

fin
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TABLE 1 RADAR CROSS SECTION (7) OF S'ME SIMPLE SHAPES

VIEWING
ORIEN rATiON

PL`RTINENT (AND IIODY
DIMENSIONS IAN•i WAVELENGTH ; " HOx SECTION

SHAPE POLAIPIZATION)l CONDITIONS111

Sphere Rad(Js - a hka 30) iA
2

Watlength - A (ka - 1) . 65RA
2

to . 2n (ka .05) 9(kA)4,.2

Doubly Curved Radii a And a2 Normal to Surface a Ia2
Surface 

I

Ellipsoid. Semi-Axes a,b.c. 0 to a-Axi r a~b2c
2

General # to C-Axisi (a sin2 acoo - b2 sinZ & sin2 c0 -

Ellipsoid of Semi-Axes a = bc v to c-Axis - b4c2

Revolution (b'-c- - €3 @3

OgiOv of Diameter d Normal to Axis W(IZ . d 2
Revolution Leigth I b

iii. Circular Radius a At Angle * to .2
Plate 4.1asini Normal 4 a 

4
ra j Cos 2

(JI z Ist Order

Bessel Function)

Flut Plate Area S Normally 4mS A )2
Peaks at SmalI 0
Excluding Peak at 2 2

Normal Incidence 42 C•4

Plane or Ed g e Loenoh I Edge On 2
Thin W'eds* (Polarisaion

to Edge)

Cylinder Rea&u , A At A*,*l 0 from 2 a 1/ (sin X)2 C.
Lengh • I Normal to Axis k -- 0

A ImPeak at 
-l!N.1wsds re~k a lt at a

dNorm Ibedmms h e 0

Lkagptical lemo I NornmaltAxis of _ _ _ _2

Cvlinder bmi-Awse . .. b Cyllasrad a mo
2 

at 3 b
ANtle 4 to fs-Avgit A(a *. b sin ;)In

Inflite Cots NO An g• A tan 0 16a 4
(Conical lip) A Ian 16m

Nowk 1 iAmsy Wim-hft wa * tan o2 h-h t.en a

Cone(Small ai Normal A cla3t.i eaIt 3ch sin ame"ll Raft"I•• Coaile suI• * *A sinj a .,06 9A o.

0 -P from Axis 0 0' ," 0 •ttn a

* ~ ) * ** Ab7a.0 [tf (0 -0)tu
3 

- 1411

k Ittan 2
a 07ý " sin 0 tan (0 -a)

C ~ htitan ar*FIn.7 T inz of- .cos.',-nolsin#I

_n rCos I]
Frus tum of Cone Half Angle - a Normal to 2

Smaller Radius a Conic Surface on a| - a1 3 2)

Larger Radlu s A 9A, sin a a Co s

C orner Each W Edge a At Maximum # 49? a
Reflector fa

UT

*When not specified. polarlaf ion Is not critical
_Whien nfj. specified. Wa'el•lgtth • body imenslonm
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TABLE I RADAR CROSS SECTION (a) OF SOME SIMPLE SHAPES
(CONTINUED)

VIFWII
O•RIENTATION

PERTINENT I A.ND KIDY O% ADAIH CHOtiS SEC TION

DrMENSIONS (AND WAVELENCTH
SHAPE POLARIZATION * CO:WITIONW) •

Parhabolod x| 3 If 2 4p A
t 

angle 'troin Axis 4Or p
2 

see
4

Wire EAler's constant = V - At antL , to Axis '2 L "2
1.76 ?! LoRadiua of wire - a L

2  
,2 ,2, I-Leltowtr ' L Tw-I ---

Length ofr-r-- reos,
Polarization at angle c ros4 4
from parallel to axis (ot - -

Flat Rectang imar imension a x b At angle @ from
Plate Angle measured Normal 4wr (ab)2 sin (ka sin# c a)

from (oorainate a-"•- a 7sine coe

sin (kb sin v sin•n ¢O
2 
2

kl" in# sin , J

Truncated Ogive Og.ve angle aat noee. At Angie * from axis
Ogive avle a' at a' of ogve
Minor radiuas of ogve a 2 o
Majorridiusofogivea A&'Y <u*nd Aan C.- !, tlAa Cn'.o
Ogive radius 9 e., s it,#

W tan (..o)t '
8-r sin#i

.When not •WUct0d. polarilation is not critical
."Won not opecilied. wavelengtht.: body dmentions
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